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Integral convolution equations given on a system of segments are considered;
the kernel of the integral equation is a periodic function with period ¥ The
unique solvability of the equations is established for kemels of a general kind,
an approximate factorization is given a foundation, and 2 method for construc-
tion of the approximate solution is also indicated,

Integral equations of the kind mentioned occur in mixed problems of elasticity
theory and mathamam:ni physics, posed for finfte bodies [1, 2], as well as for
infinite bodies with periodic boundary conditions {3}. “The reggit h&:ein, just as
in [4], is necessaty for the comrect formulation and solution of dynamic contact
problems,

1, Let us consider the integral equation
N gk
Ke=3 | ke~ wa (Gt = 20 (z) = 2nf (1.1)
k=1 Sg3
B ST K amy G — 0 T, axlakn

whose kernel is a periodic function with period 7' of the form
k@)= 3 K(njexp(Qmint/T) (1.2)

TR v Y

We constider K (n) to be the values of a function X (u), at n points, which possesses
the following properties on the real axis : (*) '

1) K (u) is an even, real, continuous function

2) K{u) >0, ful < o

N K =2au¥1+0@Y, —-x), 0yt

8>1—7v (<05, 3>y (¥>0.9)

The spaces S (), s (o), C* (a, b), Ly (a, b), C{¥) introduced in [4] will be used -

herein, as will also the insignificantly modified spaces H, and Z. Let us say that
g (z) & H,, if the following inequality holds - ,

(*) If the relations (1) = (3) are satisfied only for discrete values u = n, then the function
K (u) is constructed nonuniquely by means of the given sequence X (n), by connect-
ing two adjacent points of the n and » + 1 continuous curve with the properties (1)—

={3),

814
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< N o9k
lolly = 3 K@|QumP<oo, Q)= 3 [ gaa(®)e <t
Nne= -0 k=1 agk-1

1=2n/T
Let us consider the function f (z) & E, periodic with period T if the coefficients of
its Fourier series possess the property

Iflle= 3 |F(n) K2 ()<, flz)= 3 F(n)e™ (1.3)
Nk =00 N 00
We shall let fox-; (%) denote values of the function f (Z) taken from the segment
[azx—y» agx] . Herein, as in [4], it turns out to be convenient to take values of some
function f (z) & E on the segments {azx1, asx] as the right sides fyx_y(%) in(1.1),
The following two theorems are proved by the same method as in [4],
Theorem 1,1, The operator K acts from L, (0, T) into C (0, T') continuously

for2p)t<<p<oo (<UD andl <p<<Too (0.5<<y) Letusinwoduce
an operator M of the form

N %k oo
Mg=3 [ me—8ema@ds m@= 3 M@em (14
k=1ayk1 =00

Here M (u) is a real, even function continuous on the real axis which possesses the
behavior at infini
Y M (z) = C (u-*-%)

Theorem 1,2. For values of A from the circle JA| << %~! the equation
Kq 4 AMg = 2nf (1.5)
cannot have more than one solutionin L, p = 2 (<< 0.25); (2y)' < p < 2
(025 <y<0.5); 1<p<2 (0.5<y). ifonly
% ={|MK1]c<1 (1.6)
Evidently (1,1) (A = 0)is a particular case of (1, 5),

2. Let us establish the solvability of (1.1) by the method given in [4], Utilizing
Lemma 3.1 of the paper mentioned, let us represent the function K (u) as

K (@) = K, (@) + M, @) (2.4)
Here K, (#) is a meromorphic function in the complex plane which possesses the
properties (1) - (3) of Sect, 1, and M, (u) possesses all the properties of the function
M (u) described in Sect, 1, and moreover
Il M, (u) K7 () jlc — 0, § ~ 00 (2.2)
As in [4], the zeroes and poles of the function K (4) which lie in the upper half«plane
will be denoted by 2,, L, .respectively,

Let us now turn to an investigation of (1.1) in which K, (u) plays the part of the fun-
ction K (u) i.e,, the kernel of this equation is

k(t) = i K, (n)exp itnt 2.3)

n=—o0
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Applying the Poisson summation formula to the series (2, 3) and evaluating the integral
by using residues, we represent k (f) as
o0
k() =3 sr[exp igr|t| +
r==1

2 exp 2mig,
Texpomit °03 C’“] @4
sp =20 [K (G177 lti<T

Let us now seek the solution of the integral equation (1.1) with the right side (1, 3) as
the series

<] {4
Qo1 (2 2 F(n) K, (n) exp intzr - 2 g) [z (2 — 1, v)
N=s—co l=1 v==0
(Z — @) 0XP iz T (T — @aiy) + 1 (2 — 1,0) (2.9)
(Gok — Z)" XPiZiT (Ao — )] 10, Qopey S 2 < ok

Here again as in [43, P (D) + 1 is the multiplicity of the zero z; in the upper half-
plane; starting with some sufficiently large number [ all p ({) = V. Let us insert (2.4),
(2. 5) into the left side of (1,1), let us integrate and equate to the right side (1,3). We
hence obtain an infinite systemn to determine the unknown constants Xp and Yy

k-1
AXy+ CeYi+ ) [B(1,m) Xm+ B (2, m) V] +
me=] N
+ D BGm) Xn+ Blh,m) Yol =L (2.6)
R m=1
AY 4 Cp Xy -+ Z [D 1, m\Ym+D m)Xm]—,—
m=k+1 v
+ N D@, mYm+D(4 m Xy =G (k=12,..., N,
Ma=]

Xo=Yy=Xnyu=Ynu =0, Xp={2:(2k —1,2)}, Vi={n(2k—1,v)}

The elements of the matwices 4, Cy, B (n, m), D (n, m) can be obtained from the
appropriate elements of the system (3, 8) in [4], in which all the exponents of the expo-
nentials must be multiplied by T before the operation L) is taken, For example, the
term D? exp iz; (@sx — Gak-1) from [4] must be replaced in our system by

Dv exp itz (aze — azi-y)
The elements of the matrices B (n, m), D (n, m) (n = 3, 4) are

B, m=QB(n—2,m),D(n m=QD(n—2, m) 2.7
Here  is a diagonal matrix whose elements are
o = (1 — exp 2mil,) " exp 27, (2.8

Let us represent the right sides in (2, 6) as
k-1 N
Z L () + Z Ond, () ¢, (1)

memt M=zl

Le= (b (b} = |



Periodic convolution equations on segments 817

N AY
Gk={gr(/»->}={ St )+ 0. () + s ()
Me=li+l m=1

tr(my =3\ F (1) K™ (1) (G — 137 {eXP T [T (€ahog — umey) -

N=-—0c0

+ na2m—1] — exXp it [;: (7-2):—-1 - azm) -+ nagm]} (29)

(-

T, (M) = 2 F(n) K (n) (5 — )t {exp it (L, (Qom — aax) =

T filym] — eXp it [L, (Qgmey — sk) + Nagm-1]}
& F(n)expitna,,_ X F@mexpi
Y= N ake1 N XP iT nay,
0= 2 goarm o YW= 3 T

=z -
The following is valid,

Lemma 2,1, The operator 4~! QR is continuous from any S (0), ¢ >0
into S (1 — ). Here R is any of the operators C, B, D. The elements of the matrix
4-1 are presented in [4].

By virtue of Lemma 2,1 the infinite system (2. 6) is no different from the system (3, 8)
investigated in [4] in its functional properties, But then all the reasoning in Sect, 3 of
the paper mentioned can be applied by first considering (1,1) with the kernel (2,4) and
the right side (3, 9), (3.10) from [4].

Theorem 2,1, Let f (z) € E. Then the system (2,6) is uniquely solvable in
S (1 — 7) and(1.1) with the kernel (2, 4) is solvable in C (y). The following estim-

ate hence holds
Hellco <IIKs || [ F llE (2.10)

To prove the solvability of (1,1) with a general kernel, let us examine (1, 5) in which
the functions K ; (u) and M ;(z) constructed above are taken as K (u) and M (u) .
For A = 1 equation (1, 5) agrees with (1.1),

Lemma 2,2, The operator K,~1 M; is completely continuous in C (0), ¥ <
< 0 <#° (x° = inf (8, 2y), y < 0.5; »° = inf (8, 1), ¥ > 0.5) .Combining
Theorem 1,2 and Lemma 2,2, and representing (1.1) as

g+ AR Mg = K7 (2.11)
we conclude that the method of successive approximations by means of the formula
Imyy = — }"Kl-lM!qm (2'12)

will converge for all JA| < =-1.
Theorem 2,2, Equation(1.1) is uniquely solvable for all f (z) such that

Kfel(r) (2.13)
The solution is representable as
g= 3} (— )™ (K, M)"K,? f (2.14)
M=
laleen<C| K fllewns €= 3 (K Mo)m || (2.15)

m==0
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The norm of the operator K ~*M is defined for its operation in (y).Let us note that
(2.13) holds if f &= E. In this case (2, 15) becomes

lglleco <K le, NK?=C K e (2.16)

3, Let us apply the results obtained to give a foundation to the approximate factor-

ization [4]. Let us assume that two integral equations are given

Kig, = 2af, Kag, = 2nf
in which the Fourier transforms of the kernels X (u) and K, (u) satisfy the conditions
(1)~(3)of Sect, 1, and f= E .

The question arises for which proximity relationship between K, (u) and X, (u) will
proximity of the solutions ¢; and gz of the equations presented hold in C (y) . An an-
swer would be to recommend for the selection of the funé¢tion K» (#) an easily factor-
izable function approximating K, (1) and assuring proximity of the approximate sol -
ution ¢1 to the exact J; in the metric of C (V).

Theorem 3,1, Letthe quantity

e = supa| Ky (n) — Ky (n) [ K, () (1 + n]e (v=0,kl 2, )
a>1—yv (¥<053), a>y 05<7)
satisfy the condition
e || KMt L
Then the following estimate holds

(9s— q1llem<eL | K| (1 —eL K D™ s llcen

The expression for L has been presented in (4] and |[K;~Y] is given by the relation
(2.16). The theorem is proved by the same method as Theorem 5,1 in [4],

4, Let us examine the case N = 1 in more detail, The infinite system to determine
the coefficients Xy = {z; (1, v)}, Y| = {3 (1, v)} becomes

AY, + CX,+ DB Y, + D41 X, = G

Putting v = O in the system (4, 1) (all the zeroes of the function K (z) are single),
and F (n) = 1, F (k) = O (k = n), we obtain a system of the form

cv ( 1 —exp it 55 + L, (T — 3)] | exp itzs— expitl (T —3) } ot =

Z \ & — 1z - &+
I=
expli'tnm —exp it [an - §,. (T — 3)] __ expitne: — exp it [ain 4§ (T — 0] (4.2)
H:e (n—C) K (n) - (n+ &) K (n)
(zf} = X=X, 47, c=a—a,<T

Taking into account the invertibility of the matrix 4, we conclude that the system
(4.2) is the most specified (the matrix A has the least perturbation) for the relation

20 = T between the parameters, The exponential functions of the coefficients in
the system (4, 2) have negative exponents of the same order in this case, under the con-
dition that the zeroes z; and poles (, are of the same order, In case . > 2, , (4.2)
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will evidently be close to the system (2,19) investigated in [5], This latter means that
the solution of the integral equation (1,1) is close to the solution of the integral equa~
tion

K= jk«v-——& ¢* (8)dE = 2nf (c), 12 <e, Tm=—a, Tm=c

[+

k)= [ Kawewtdu, f(z)= | Fn)emdn, g*(E) =g (8/%)

-0

Equation (4, 3) has been investigated in {4], and in [6, 7] for largeea .

The result presented in these papers permits estimation of the norm of the inverse
operator of (4, 3) which is always necessary to estimate the accuracy of the approximate
solution,

5. Presented below is one of the procedures permitting estimation of the norm of the
inverse operator of the mentioned equation for large a. According to [6], for

f(z) = exp inz (@ (E) =56 —m)
the solution of (4. 3) is

ga(z) = K () e — S (— 1)4{S (a + 2) F¥ (g, 2)
k=)

(5.1)
‘P [t’ n (“"‘ 1)}\] + S(a -.‘L‘) Fk (avz)‘«p [tv ’fl(_ 1),”1]}

Here the operators I (a, 3), S (z) are given, respectively, by (7) and (13) from the
paper mentioned, The operator F {a, 2)is continuous in the space 4 of functions reg-
ular in the lower half-plane and bounded with weight z there, The norm of the opera-
tor I' {a, z)in the space 4 is given by the right side of the relation (10) in [6],
Lemma 5.1. The operator S (a - z)is continuous from A into ¢ (0.5) [4].
It is necessary to show that

masixico| (a2 — 20 S (@ + 2) f | < M| f|la (5.2)

If /€ A, then the operator S (z) can be represented, on the basis of (13), as (the
contour in the lower half-plane is deformed)

S(o)f =gz \K (1) (1) et
Let us assume
m = infy max;e, | K71 (t) £03] (5.3)

Under the assumptions in [6] m < oo. Then

i1 B2 L0 <2
Y Y

<2%";-S

X

enit
Sl 1atfla

Using the notation
-~if
ISII< M = 7% max, S | fm-] [dt| < o0, ze[0,2a) (5.4)

X
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we obtain (5,2), The lemma is pmved

Lemma 5.2, Let f(2) & Cf (—a, a) (A > 0). Then there exists its continua-
tion f* (1) &= C" (—b, b) in[—b, b] D [—a, al such that its Fourier transform
® (1) satisfies the relation

fOM A+ [ <Cllfllep ca,a (5.5)
Lemma 5,2 is proved by methods elucidated in [8], The inequality
lella<<Oflchca,m ~ (A>05) (5.6)

is proved on the basis of Lemma 5. 2.
Lemma 5,3, For fE C* (—a, a) the estimate

@ -~
H Kg:; e™ dn |lc-a,0) < V| flle] -a.a) (3.7)
is valid, To prove Lemma 5. 3 it is sufficient to utilize the customary procedure of
inverting the Fourier transform [8] and the property (2) in [6],
Combining Lemmas 5,1, 5.3 and the inequality (5,6), we obtain

gllcen <[V +2[SI(1—UF[y*6]]fllc; ca,a

Therefore
IK* <N +2|S|[(t—||F})™8 (5.8)
The author is grateful to 1,1, Vorovich for valuable comments,
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