
(*) If the mktions (1) d (3) ate satisfied only for discrete values u = n, then the functioa 
K (~1 is crrnstructed nonuniquely by moan8 of the given mqutsnce K (n) , by cmnect- 
ing two adjacent points of the n and ri + 1 continuous curve with the propW!ties (f)- 

-@“), 
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II 4 II & = i K (4 J Q (4 I2 < 00, 0 (u> = i s”’ q2dk) eiuw 

Let us consider the function f (5) E E, periodic with period T if the coefficients of 

its Fourier series possess the property 

11 f /IE = 5 jF (n) K-l (n)l< w, f(x) = 5 F (n) I+- W) 
nt-m nim -0D 

We shall let f&-r (z) denote values of the function f fs) taken from the segment 

I&k _1, usk) . Herein, as in [4], it turns out to be convenient to take values of some 

function f (z) F E on the segments f@~i, asr] as the right sides f&2) in (1.1). 

The following two theorems are proved by the same method as in [4> 

Theorem 1.1. The operator K acts from L, (0, T) into C (0, 2') continuously 

for (27)-l < p < oo (y < 0.5) and 1 ( p < 00 (0.5 < r) Let us introduce 

an operator M of the form 
N %k 

Mq s 2s m (I - t) &k-l (t) ai9 m @> = $IJ M(n) eitnx (1.4) 
k=l02)1_1 n--m 

Here I?!! (u) is a real, even function continuous on the real axis which possesses the 
behavior at infinity 

M (u) = 0 (n-*+) 

Theorem 1.2, For values of h from the circle jhj < %-I the equation 

Kq + AMq = 2xf (1*5) 
cannot have more than one solution in L,, p = 2 (y < 0.25); (2~)” < p & 2 

(0.25 < y < 0.5); 1 < p < 2 (0.5 < y) s if only 

x = I/ MI!? Ijo < 1 U.6) 
Evidently (1.1) (A = 0)is a particular case of (1. S)+ 

2, Let us establish the solvability of (1.1) by the method given in 143. Utilizing 
Lemma 3.1 of the paper mentioned, let us represent the function K (u) as 

K (u) = K, (u) + &I, (d (2-Q 
Here K, (u) is a meromorphic function in the complex plane which possesses the 
properties (1) - (3) of Sect. I, and fif, (u) possesses all the properties of the function 
n!! (u) described in Sect. I, and moreover 

II Ma (u) K.-l (~1 ilc -+ 0, s*cxl (2.2) 

As in [4], the zeroes and poles of the function K, (U) which lie in the upper half-plane 
will be denoted by Z,, &-, _ respectively. 

Let us now turn to an investigation of (1.1) in which K, (u) plays the part of the fun- 
ction K(U) i.e., the kernel of this equation is 

k (r) = i K, (n) exp iznt (2.3) 
n=-00 
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Applying the Poisson summation formula to the series (2.3) and evaluating the integral 
by using residues, we represent k (t) as 

(2.4) 

Sr = 2ni [K,-l(&)l’-1, Itl<T 

Let us now seek the solution of the integral equation (1.1) with the right side (1.3) as 

the series 

Qz&1 (3) = i F(n) K,-’ (n) e?cp ints f $ y [XI (2k - 1, v) 

Here again as in [4], P (I) f 1 is the multiplicity of the zero z1 in the upper haif- 

plane; starting with some sufficiently large number 1 all p (1) s U. Let us insert (2.4) 

(2.5) into the left side of (1; 1). let us integrate and equate to the right side (1.3). We 
hence obtain an infinite system to determine the unknown constants XI, and YI, : 

-‘=k + ckyk + 2 [B (I, m) 1, + B (2, m) Ym] + 
m=1 

+ ; [B(3,m)X,+B&m) Y,]=& (2.6) 
l?l=l 

AYk+CkXk+ 5 [D(1,m)Y,+D(2,m)X,lf 
m=k+i 

+ 2 [D(3,m) Y,“Dpi,m)X,] =Gk (k=l,2,. ,:‘I, 

X 0 = Y, = XIV+1 = YN+1 = m-1 0, Xk={X~(2k---,~)], Yk={yl(2k----1,U)) 

The elements of the matrices A, Ck, B (n, m), D (n, m) can be obtained from the 
appropriate elements of the system (3.8) in [4], in which all the exfiments of the exP+ 
nentials must be multiplied by z before the operation .U is taken. For example, the 

term DU exp izr (%k - Uer-3 from [4] must be replaced in our SyStem by 

Du f?sJl iTZ, (azk - Q;_,) 

The elements of the matrices B (n, tn), D (II, m) (n = 2. 4) are 

B (n, m) = Q B (n - 2, m), D (n, m) = OD (n - 2, n,) 

Here Q is a diagonal matrix whose elements are 

arr = (1 - esp 2~ri&)-~ exp Zni,, 

Let us represent the right sides in (2.6) as 
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Gk = {g, (A.)} = 1 g 
.\ 

I 
1, (111) + 2 (0, ,.t, (m) + 

n1 I kT1 ?J,=1 

cc 
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t, (~8) = 2 P (II) Ki‘s-1 (II) (&. - H)+ (esp it [ 5, (Q._~ - a,,,,_,)+ 
T&z--00 

F (12) exp irn u,~_~ OE 
(5, -J)I)A~(R) ’ sp(k) = 2 

P (n) exp it naZk 

ll=-oD l‘=-s 
(E,. -- n) K,(n) 

The following is valid. 
Lemma 2.1. The operator A -I QR is continuous from any S (o), U > 0 

into S (I - y). Here & is any of the operators C, n, D. The elements of the matrix 

A -1. are presented in [4]. 
By virtue of Lemma 2.1 the infinite system (2.6) is no different from the system (3.8) 

investigated in [4] in its functional properties. But then all the reasoning in Sect. 3 of 

the paper mentioned can be applied by first considering (1.1) with the kernel (2.4) and 

the right side (3.9). (3.10) from [4]. 

Theorem 2.1. Let I (5) E E. Then the system (2.6) is uniquely solvable in 

s (1 - r) and (1.1) with the kernel (2.4) is solvable in C (y). The following estim- 

ate hence holds 
11 q kc(u) < 11 k-l 11 11 f I/E (2.10) 

To prove the solvability of (1.1) with a general kernel, let us examine (1.5) in which 
the functions K, (u) and am, constructed above are taken as K (u) and M (rz) . 
For h = 1 equation (1.5) agrees with (1.1). 

Lemma 2.2. The operator K, -r M, is completely continuous in C (a), y < 
< 0 < x0 (x” = inf (d, Zy), y < 0.5; ~0 = inf (6, I), y > 0.5) Combining 
Theorem 1.2 and Lemma 2.2. and representing (1.1) as 

q + hK,-r iU,q - Ka-‘f (2.11) 

we conclude that the method of successive approximations by means of the formula 

4m+l = - hK,-lM,qm (2.12) 
will converge for all Jh 1 < x- ‘. 

Theorem 2.2. Equation (1.1) is uniquely solvable for all f (5) such that 

K,‘f~C(r) (2.13) 
The solution is representable as 

q = $ (- l)m(KI-l~J)mK~-lf (2.14) 

II q Ih < C II k-f IIc(uj, C = j$ II (K-l Ms)” II (2.15) 
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The norm of the operator KS- ‘M,is defined for its operation in C (y),f.,et US note that 
(2.13) holds if f E E. In this case (2.15) becomes 

II q IICW S It K-i II II f IIE, II K-’ II = C II K-l lle-c(yj (2.16) 

3. Let us apply the results obtained to give a foundation to the approximate factor- 
ization (41. Let us assume that two integral equations are given 

%?t = 2nf, K,q, = 2nf 
in which the Fourier transforms of the kernels K,(u) and Ks (u) satisfy the conditions 
(l)-_(3) of Sect. 1, and f E E . 

The question arises for which proximity relationship between K, (u) and K, (u) will 
proximity of the solutions Q1 and Qs of the equations presented hold in C (y) . An an- 
swer would be to recommend for the selection of the function Ks (u) an easily factor- 
izable function approximating KS (u) and assuring proximity of the approximate sol- 
ution Qs to the exact Cs in the metric of C (y). 

Theorem 3. 1. Let the quantity 

e = sup* ( K, (72) - K,(n){K,-l(n)(l+pp (n=0.$-~*c?x2,‘..) 

a > 1 - r (7 < 0.5), a>7 (6.5dr) 

satisfy the condition 

e < 11 K,-lII -IL-~ 

Then the following estimate holds 

The expression for L has been presented in [4] and llKr-‘1J is given by the relation 
(2.16). The theorem is proved by the same method as Theorem 5.1 in [4j. 

4, Let us examine the case N = 1 in more detail. The infinite system to derermine 

the coefficients x1 = {zt (1, u)}, Y, = {ye (1, u)} becomes 

AX, + C,Y, + B (3,i) x, + R (471) y, = LI (4.1) 

AY, + c,xl + D (3,i) y, -I- D (494) X, = 6 

Putting v = 0 in the system (4.1) (all the zeroes of the function KS(a) are single). 

andF(n) = l,F(k) = 0 (k + n), we obtain a system of the form 

m ( 1 - exp ie [z13 + 5, (T - 5)l 

?I1 

-L exp itzp - esp it<, (T - 5) 

:, - 21 
-!- 5, + -( I 

xl* = 

exp iznal - exp iz [ a2n $- 6, (T - 5)] 
T 

exp iTnu2 - exp if [am + 5, (T - O)l 

I-E (n - 5,) K (n) (n + 5,) x (n) 
(4.2) 

{LI$> = x1- = x, & Y,, o=a,-aa,<T 

Taking into account the invertibility of the matrix A, we conclude that the system 
(4.2) ls the most specified (the matrix A has the least perturbation) for the relation 
20 = T between the parameters. The exponential functions of the coefficients in 

the system (4.2) have negative exponents of the same order in this case, under the con- 
dition that the zeroes zr and poles r, are of the same order. In case 5,. 9 Z1 , (4.2) 
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will evidently be close to the system (2.19) investigated in [FJ, This ktter means that 
the solution of the integral equation (1.1) is close to the solution of the integrat equa- 
tion 

x,= [ k( 
* 

5- 9q*(Qd5=21Ff(s), l~l<~o, k--f6 a=a (4.3) 
-a 

Equation (4.3) has been investigated in 141, and in (6, 71 for large a . 
The result presented in these papers permits estimation of the norm of the inverse 

operator of (4.3) which is always necessary to estimate the accuracy of the approximate 
solution, 

5, presented below is one of the procedures permitting estimation of the norm of the 

inverse operator of the mentioned equation for Iarge a. According to [S], for 

f (SC> = exp iqx (0 (8 = 8 G - 11)) 

the solution of (4.3) is 
Qa (s) = K-t (T)) @x - 2 (- f)k$S (a + 2) Fk (a, z) 

k==o 
W) 

q It, rl(- 1)“‘l + S(fl- ~)FkW)~k~(- f)“+‘]) 

Here the operators Y (n, c), S kc) are given, respectively, by (7) and (13)from the 
paper mentioned. The operator F (a, Z) is continuous in the space A of functions reg- 
ular in the lower haIf-plane and bounded with weight z there. The norm of the opera- 

tor I; (n, z) in the space A is given by the right side of the retatfon (10) in @I& 

Lemma h. 1. The operator s (a _t z)is continuous from A into C (0.5) [43. 
It is necessary to show that 

WXl,i(, 1 (f2 - s')n'a%kkz)f I< d%f tiff/A (5.2) 

If. f f A T then rhe operator s (z) can be represented, on the basis of (X3), as (the 
contour in the Iower half-plane is deformed) 

s (Xl f = -i&- \ K+-’ (t) f (t) e-%jt 
., 
Y 

Let us assume 

nk = inf, maxi Er 1 K++ (t> P5 f 

Under the assumptions in [S] m < 05. Then 

Using the notation 

11 s Ij < n!f = emax, [ 1 $&I Idtj<oo, sE[0,2a], (5.4) 
YX 
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we obtain (5.2). The lemma is proved. 
Lemma 5.2. Let I (5) E c,^ (-a, a) (A > 0). Then there exists its continua- 

tion f* (z) E C: (4, b) in [--b, bl 3 [ -_a, a] such that its Fourier transform 
@ (7) satisfies the relation 

I Q (rl) I(1 + I rl I)l+h < c II f /IQ (-a,*) 

Lemma 5.2 is proved by methods elucidated in (S]. The inequality 

tI % IIA < 0 11 f I&-W) @ > 0.5) 

is proved on the basis of Lemma 5.2. 
Lemma 5.3. For f E CIA (-a, a) the estimate 

(5.5) 

(5.6) 

iI c m +f#- einr dq Ilc(- a,a G iv II f II&w) ) 

-& 

(5.7) 

is valid. To prove Lemma 5.3 it is sufficient to utilize the customary procedure of 

inverting the Fourier transform @] and the properry (2) in [S], 
Combining Lemmas 5.1, 5.3 and the inequaIity (5.6). we obtain 

Therefore 

II 4 Iho.~, G [N + 2 II S II (1 - II F II>-’ 01 11 f IIclh (-a,a) 

\I K-l II & N + 2 II S II (2 - II F II)-’ 0 

The author is grateful to I. I. Vorovich for valuable comments. 

(5.8) 
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